印刷行业

油墨的分散解析(五)

发布时间:2014-08-25
 
         在油墨中有许多颜料的基本颗粒尺寸是很小的。但是,由于这些基本颗粒有粘附在一起而聚集成比之大许多倍的聚集体(团),所以,就要用机械来进行研磨,以使这些聚集体分散至所需的程度。
  机械研磨的主要目的就是将颜料聚集体分散于连结料中,使之形成细颗粒的分散体。由于颜料是决定油墨色彩和光学特性的关键,所以它不仅取决于对光的扩散与吸收,且这些与它的颗粒大小也有关。例如在相对条件下,油墨冲淡后的饱和度(着色力)、色相等均与颜料颗粒的分散度有关,这是人所共知的。
  由于颜料的化学组成与物理特性不同,故它们的分散性能也就各异。分散过程一般分三个阶段,即(1)颜料聚集体开始润湿,(2)颜料聚集体破碎成小颗粒,即聚集体被分离,(3)用连结料置换颜料颗粒表面的空气,即颜料颗粒表面吸附的水或气被润湿介质所取代——在颜料颗粒表面附着润湿介质。
  颜料颗粒在连结料体系中的情况可以这样来说明之:(A)一些干的颜料颗粒由于它们的表面引力而相互“抱”在一起,颗粒之间的空间是空气,这种现象叫聚集;(B)颜料颗粒良好地分散在连结料中;(C)一些已润湿或分散的颜料颗粒由于某些力的作用慢慢又形成絮状,颗粒之间是连接料,这种现象叫絮凝。分散体的絮凝作用取决于连结料和颜料的性质以及絮凝物质的出现;(D)当分散颗粒间的引力小到不可能产生絮凝时,则颜料颗粒就可能定向,从而形成疏松结构。
  颜料颗粒在开始润湿时,首先应使颜料和连结料很好地混合,为了使它们具有良好的亲和性以便更快地润湿,所以采用表面活性剂是常用的做法。因为表面活性剂可改变颜料和连结料之间的极性,有些表面活性剂具有平衡的极性和非极性结构,从而可在两个表面间形成一个桥或联结。
  为了破坏这些聚集,就需要利用各种力,例如(1)物理撞击,(2)颗粒与颗粒之间的相互碰撞,(3)通过流体(如连接料)的剪切。一般说,比较大的聚集体(50—100微米)可以被分散设备(如三辊机、球磨机、砂磨机等)的剪切力进行物理分散。而比较小的颜料聚集体则大多是由于包在颜料聚集体外面的连接料的剪切作用而分散的。连结料对颜料的剪切作用主要是由于(1)连结料对研磨表面的粘附;(2)连结料对颜料表面的粘附;(3)连结料的内粘附(内聚力)强度,即粘性。
  当以连结料置换(替代)包在颜料外面的空气时,润湿过程才算最后完成,达到了分散的目的。这个过程可以提高颜料的透明度,降低颜料颗粒间的引力,这是由于在颜料和连结料之间形成了反抗聚集的物理链,使颜料颗粒不能再聚集之故。
  颜料分散后形成的分散体的稳定性主要取决于以下三种力:(1)排斥的静电力——由颜料颗粒表面的离子或带电基团而引起;(2)吸引的伦敦—范德华引力——由于颜料颗粒和连结料之间的介电常数不同而引起;(3)由于颗粒表面出现的不带电基团(使颗粒间相互像一个栅栏一样)而引起的“位阻”稳定作用。由于排斥性的静电力在水性介质中比较明显,而吸引性的伦敦—范德华力则在有机和水性介质中均有,故颜料分散体在有机介质中的稳定性,一般是取决于“位阻”效应的。
  由于电的力量而排斥的理论,即DLVO理论,它基于当介质中的一种可离子化的物质以正或负离子的形式吸附在颜料表面上,其相对应的电荷扩散入介质中后,就会发生电荷排斥。故这些颗粒就会得到一种相似的电荷,虽然分散体中出现了这些电荷,但其保护力也会随着因陆续加入更多的连结料而破坏。如果在分散体中一次加入大量的连结料时,就会发生“肢体震荡”效应。这样,由于颜料体积的变化,颜料颗粒会发生再聚集作用。同样,在体系中加入过量的溶剂时,也会发生这种情况,因为溶剂会从颜料颗粒上洗去连结料。
  实际上,颜料分散在(溶)有聚合物分子的连结料中以后,连结料就被吸附在颜料颗粒表面,并以一部分链伸向连结料中,从而使两个相同的颗粒不能再接近,防止了再絮凝的发生。
  从热动力学观点看,位阻稳定性可分为熵稳定作用和热函稳定作用,或是它们二者的联合形式。实际上,它们的差别在于前者是在冷却的条件下会絮凝,后者是在比较热的条件下会絮凝。这样,就提出了一个实际问题,即对有些油墨来说需要存放在比较冷的条件下,而有一些油墨则需存放在比较热的条件下,这 样,才可避免体系发生絮凝。
  絮凝作用一般发生在液体系统中,它是颗粒之间暂时的联合,只要用不大的力就可以破坏它。因为在液体介质中颗粒是处于不规则的布朗运动下,它们随时有可能接触并形成团状疏松絮凝体。显然,产品的粘度越低则运动越快,碰撞比例也越多。
  在高粘度的浆状油墨中,因为高粘度的摩擦阻抗比颗粒表面上的力还要大,故不可能发生布朗运动,絮凝也就不会出现。
  由于分散后的颜料颗粒有可能再联结在一起,故其表面吸收层不能变形,而且应当紧紧抱住分散颗粒。位阻效应则取决于吸收材料的分子量大小,低分子量的连结料(干性油连结料、油改性的醇酸树脂等)则易于吸入到颜料聚集体中去,如果有溶剂存在,则会加速这种渗透。
  所以,在分散过程中,连结料的润湿性是非常重要的。我们知道,硝酸纤维,丙烯酸,乙烯类等连结料的分散性是比较差的。连结料对颜料的润湿效果取决于颜料与连结料之间的表面张力:界面张力高,则润湿效果差。
  对于分散性的测定,目前尚无统一的方法,一般就是用细度板(刮板细度计——Grind Gage),筛法以及着色力等来判断之。
  关于分散时的温度情况,则可从粘度的变化而看出。一般地说,分散过程中温度都是上升的,这可从颜料润湿时的浸入热测出。热也有相反的效果,例如使颜料失去浓度,引起色相的变化(有的颜料在热的作用下可被部分溶解并再结晶),加速与连结料的化学反应等等,故应引起注意。
  (二)、接触角(液——固接触角)
  在研究液——固界面时,接触角是广被应用的一种手段。
  例如将一种液体放于固体表面上时,就可能发生以下两种情况:1.液体在固体表面上铺开(即发生所谓润湿):2.液体发生回抽(缩),极力限制或降低它与固体表面的接触(即不发生润湿)。液体在固体表面上的润湿情况可通过测定液—固界面形成的接触角θ来判断,这种角一般是通过一种液体来测定的,其范围可以自0°至180°。
  接触角的大小可以用表面张力来测定之,一种液体放在一个平的固体表面上所形成的液体接触角的大小,可由作用在液—固界面端的三个表面张力来测定之。第一个力是液体的表面张力σ1,它的作用是将液体从与液面成正切的方向的界面端拉离(液体表面张力与固体表面形成的角,可定义为液体的接触角)。第二个力是界面张力σs1,它存在于固体表面与液体间接触的地方,这个力的作用也是将液体从界面端拉离,但其方向仅指固体表面而言。第三个力是固体表面的表面张力σs,它是将液—固界面端拉住,方向则与界面张力相反。
  一般σs往左边拉,σs1往右边拉,σ1往右上方拉,其向右边的分力与σ1cosθ相等,下式表示了它们的相对作用力:
  σs=σs1+σ1cosθ (1)
  一般地说,接触角为0时,固体就被液体所彻底润湿(例如矿物油放在金属表面上)。接触角大于90。时,意味着液体不能在固体表面铺展(例如水银放于玻璃板上-——约140°,水放在石蜡上——约100—115°)。

中国市场研究网倡导尊重与保护知识产权,对有明确来源的内容注明出处。如发现本站文章和图片存在版权或者其它问题,烦请将版权疑问、授权证明、版权证明、联系方式等发邮件至hjbaogao@163.com,我们将第一时间核实、处理。

秉承互联网开放、包容的精神,中国市场研究网欢迎各方媒体、机构转载、引用我们原创内容,但要严格注明来源中国市场研究网。

Copyright © 2018 中国市场研究网
中国市场研究网(www.hjbaogao.com.cn)提供各行业研究报告及市场前景分析调查报告,是您首选的行业调研报告网站。
copyright @ 2002-2017 hjbaogao.com.cn, all rights reserved  中国市场研究网 版权所有 复制必究

首页
分类
搜索