数码IT
2020-2026年中国人脸识别市场运行态势及行业前景预测报告
发布时间:2020-06-21
2020-2026年中国人脸识别市场运行态势及行业前景预测报告
- 【报告名称:】2020-2026年中国人脸识别市场运行态势及行业前景预测报告
- 【报告格式:】纸质版/电子版
- 【交付方式:】特快专递/E-mail
- 【中文版价格:】纸质版:7600元 电子版:7800元 纸质+电子版:8000元
- 【联系电话:】166 199 87910
- 【联系人:】龙经理
报告摘要
人脸识别行业基本概况分析
人脸识别技术在中国的发展起步于上世纪九十年代末,经历了技术引进-专业市场导入-技术完善-技术应用-各行业领域使用等五个阶段。目前,国内的人脸识别技术已经相对发展成熟,该技术越来越多的被推广到安防领域,延伸出考勤机、门禁机等多种产品,可以全面覆盖煤矿、楼宇、银行、军队、社会福利保障、电子商务及安全防务等领域,人脸识别的全面应用时代已经到来。
人脸识别技术介绍
——人脸识别技术流程分析
人脸识别的技术原理主要包括三大步骤:首先是建立人脸图像数据库,其次是通过各种方式来获得当前要进行识别的目标人脸图像,最后是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选,其技术流程如下:
(2)人脸识别主要方法分析
人脸识别技术是一个跨越多个学科领域知识的高端技术研究工作,涉及图像处理、生理学、心理学、模式识别等知识,目前比较常见的人脸识别方法包括基于特征脸的方法、基于几何特征的方法、基于深度学习的方法、基于支持向量机的方法以及其他综合方法。
(3)常用人脸数据库分析
目前世界较为常用的人脸数据库包括:ERET人脸数据库、CMU Multi-PIE人脸数据库、YALE人脸数据库、YALE人脸数据库B、MIT人脸数据库、ORL人脸数据库、BioID人脸数据库、年龄识别数据集IMDB-WIKI等。
2、人脸识别技术具有非侵犯性
人脸识别是生物特征识别技术的一个重要方向,不同的生物识别技术在细分技术上各具优势,人脸识别技术是非接触和不需要主动接受的,具有非侵犯性。此外,人们对这种技术的排斥心理最小,因此人脸识别技术是一种最友好的生物特征识别技术,并且图像采集可以由安防中的摄像头完成,不需要重新再布置新的采集设备。
3、中国人脸识别行业技术环境十分活跃
截至2019年底,在soopat专利搜索引擎上以“人脸识别”为关键词检索得到20208项专利申请记录,行业技术环境十分活跃。
从申请年来看,2010-2018年,我国专利申请数逐年增长,2018年增加至5618项,为近年来最高,2019年我国人脸识别相关专利申请数达3024项。
从公开年来看,我国最早于2002年有人脸识别相关专利公开,当年公开数量为1项,随后专利公开量保持快速增长态势,2019年我国人脸识别相关专利公开数量为6700项。
4、中国人脸识别技术发明专利申请量超六成
在超2万项的人脸识别技术专利中,发明专利的申请量最多,达12407项,占比为61.40%;其次为实用新型专利,占比为24.76%。
5、G06K专利申请量过万
从我国人脸识别相关热门专利技术申请分布领域来看,G06K(数据识别、数据表示、记录载体、记录载体的处理)申请量最多,达10134项;其次为G07C(时间登记器或出勤登记器、登记或指示机器的运行、产生随机数、投票或彩票设备、未列入其他类目的核算装置),申请数量为1302项。
6、人脸识别错误率逐年降低
经过了40多年的发展,人脸识别技术取得了长足进步,根据LFW测试成绩显示,目前最优的系统在千万分之一的误报下达到识别准确率准确率已经超过99.8%,甚至超过了人类的识别程度,错误验证率也控制在0.2%以下。
即使是采用评测标准最严格的FRVT测试,根据2019年7月3日NIST公布的FRVT最新报告显示了全球人脸识别算法的最高水平可以做到在千万分之一误报率下,漏报率降低于0.3%,这意味着千万分位误报下的识别准确率已经超过99%,人脸识别技术的不断进步无疑会促进其在更广泛范围内的应用。
7、人脸识别应用场景广泛,安防和考勤门禁占比较高
目前,人脸识别在考勤/门禁领域的应用最为成熟,约占行业市场的40%左右;安防作为人脸识别最早应用的领域之一,其市场份额占比在30%左右;金融作为人脸识别未来重要的应用领域之一,其市场规模在逐步扩大,目前约占行业的20%。
8、三维人脸识别技术将是未来发展主流
从人脸识别技术发展过程来看,未来三维人脸识别是人脸识别主要技术手段,二维人脸识别只是人脸识别发展的过度阶段。实验结果显示,二维人脸识别系统在人脸左右偏转达到40度识别率迅速下降到50%以下;而采用三维人脸识别后,识别率可以提高至少10-20个百分点。
报告目录
第.一章 人脸识别的基本概况
1.1 人脸识别技术总述
1.1.1 基本概念
1.1.2 识别流程
1.1.3 人脸特征
1.1.4 识别算法
1.1.5 识别数据
1.1.6 配合程度
1.2 人脸识别发展特性
1.2.1 相似性
1.2.2 易变性
1.3 人脸识别发展优势
1.3.1 技术特点
1.3.2 技术优势
1.3.3 应用优势
第.二章 人脸识别行业发展环境分析
2.1 国际环境
2.1.1 国际经济环境
2.1.2 市场发展规模
2.1.3 行业发展趋势
2.2 政策环境
2.2.1 行业标准发布
2.2.2 标准内容分析
2.2.3 央行支持文件
2.2.4 科技创新规划
2.3 经济环境
2.3.1 宏观经济概况
2.3.2 工业运行情况
2.3.3 固定资产投资
2.3.4 宏观经济展望
2.4 社会环境
2.4.1 互联网普及情况
2.4.2 居民收入情况
2.4.3 国家科研实力
2.5 产业环境
2.5.1 市场规模机构
2.5.2 市场机构分析
2.5.3 产业发展挑战
第三章 2018-2020年中国人脸识别行业发展分析
3.1 中国人脸识别行业发展动因
3.1.1 识别效率提升
3.1.2 应用需求上升
3.1.3 接受程度较高
3.1.4 相关政策利好
3.2 中国人脸识别产业链分析
3.2.1 产业链结构分析
3.2.2 上下游布局企业
3.2.3 上游发展特点分析
3.2.4 中游技术发展进展
3.2.5 下游未来发展趋势
3.3 2018-2020年中国人脸识别市场发展状况
3.3.1 市场发展阶段
3.3.2 市场产品分类
3.3.3 市场发展特点
3.3.4 市场发展规模
3.3.5 商业模式分析
3.3.6 盈利模式分析
3.4 中国人脸识别行业发展问题
3.4.1 行业发展问题
3.4.2 技术发展瓶颈
3.4.3 隐私保护问题
3.4.4 技术安全问题
3.5 中国人脸识别市场应对措施
3.5.1 产业发展建议
3.5.2 技术发展对策
3.5.3 技术安全防范
第四章 2018-2020年人脸识别技术发展分析
4.1 人脸识别技术综况
4.1.1 技术发展历程
4.1.2 技术原理分析
4.1.3 技术发展特点
4.1.4 关键技术分析
4.1.5 技术影响生活
4.2 人脸识别系统分析
4.2.1 系统构成分析
4.2.2 系统设计流程
4.2.3 重点模块构建
4.2.4 系统细分模块
4.3 3D人脸识别技术分析
4.3.1 3D人脸识别方案
4.3.2 3D人脸识别原理
4.3.3 3D人脸识别优势
4.3.4 3D人脸识别应用
4.3.5 手机应用状况分析
4.3.6 3D人脸识别前景
4.4 人脸识别与相关技术的融合
4.4.1 人脸识别+大数据
4.4.2 人脸识别+虚拟现实
4.5 其他生物识别技术分析
4.5.1 指纹识别技术
4.5.2 虹膜识别技术
4.5.3 语音识别技术
4.5.4 指静脉识别技术
第五章 2018-2020年中国人脸识别应用状况及模式
5.1 人脸识别技术应用综况
5.1.1 应用阶段分析
5.1.2 主要识别产品
5.1.3 主要用途分析
5.1.4 重点应用领域
5.1.5 商业化发展分析
5.2 人脸识别应用模式分析
5.2.1 人脸识别的1:1模式
5.2.2 人脸识别的1:N模式
5.2.3 人脸识别的M:N模式
5.2.4 三种应用模式的对比
第六章 2018-2020年中国人脸识别重点应用领域分析
6.1 智慧金融领域
6.1.1 人脸识别应用背景
6.1.2 人脸识别应用场景
6.1.3 金融应用前景展望
6.1.4 银行应用规模预测
6.2 智能手机领域
6.2.1 智能手机产量规模
6.2.2 手机人脸识别技术
6.2.3 人脸识别手机产品
6.2.4 人脸识别应用问题
6.2.5 技术应用趋势预测
6.2.6 技术应用规模预测
6.3 电子支付领域
6.3.1 电子支付市场规模
6.3.2 电子支付用户规模
6.3.3 生物支付成为主流
6.3.4 人脸识别保障安全
6.3.5 电商支付领域应用
6.3.6 人脸识别支付案例
6.4 交通客运领域
6.4.1 交通运输业状况
6.4.2 轨交信息化需求
6.4.3 高铁检票应用
6.4.4 机场应用详析
6.4.5 轮渡票务应用
6.4.6 出入境人脸识别
6.4.7 公交安全驾驶应用
6.5 监控安防领域
6.5.1 安防市场规模分析
6.5.2 视频监控应用需求
6.5.3 人脸识别应用进程
6.5.4 人脸识别应用意义
6.5.5 人脸识别应用场景
6.5.6 应用布局企业分类
6.5.7 应用需求空间预测
6.6 智能门禁领域
6.6.1 门禁行业发展状况
6.6.2 门禁智能发展趋势
6.6.3 人脸识别应用优势
6.6.4 技术应用于智慧社区
6.6.5 地区应用动态分析
6.7 高校管理领域
6.7.1 课堂考勤管理
6.7.2 高校安全管理
6.7.3 防作弊生物技术
6.7.4 考场防作弊监控
6.7.5 高考人脸识别系统
6.8 其他应用领域
6.8.1 医疗健康领域
6.8.2 电子政务领域
6.8.3 公安系统应用
6.8.4 保险业务领域
6.8.5 新零售业务领域
6.8.6 智能迎宾系统
6.8.7 其他部分应用
第七章 2018-2020年中国人脸识别行业竞争格局
7.1 整体竞争格局
7.1.1 品牌竞争格局
7.1.2 技术竞争格局
7.1.3 企业竞争格局
7.1.4 五力竞争分析
7.2 初创公司阵营
7.2.1 阵营主体构成
7.2.2 商业模式分析
7.2.3 市场份额占比
7.2.4 竞争焦点分析
7.3 上市公司阵营
7.3.1 阵营主体构成
7.3.2 运营状况对比
7.3.3 企业布局方向
7.4 互联网公司阵营
7.4.1 国际企业布局
7.4.2 百度布局动态
7.4.3 腾讯布局动态
7.4.4 阿里布局动态
第八章 2016-2019年人脸识别市场重点企业运营分析
8.1 四川川大智胜软件股份有限公司
8.1.1 企业发展概况
8.1.2 人脸识别布局
8.1.3 经营效益分析
8.1.4 业务经营分析
8.1.5 财务状况分析
8.1.6 核心竞争力分析
8.1.7 未来前景展望
8.2 佳都新太科技股份有限公司
8.2.1 企业发展概况
8.2.2 人脸识别布局
8.2.3 经营效益分析
8.2.4 业务经营分析
8.2.5 财务状况分析
8.2.6 核心竞争力分析
8.2.7 公司发展战略
8.2.8 未来前景展望
8.3 汉王科技股份有限公司
8.3.1 企业发展概况
8.3.2 人脸识别布局
8.3.3 经营效益分析
8.3.4 业务经营分析
8.3.5 财务状况分析
8.3.6 核心竞争力分析
8.3.7 公司发展战略
8.3.8 未来前景展望
8.4 神思电子技术股份有限公司
8.4.1 企业发展概况
8.4.2 人脸识别布局
8.4.3 经营效益分析
8.4.4 业务经营分析
8.4.5 财务状况分析
8.4.6 核心竞争力分析
8.4.7 公司发展战略
8.4.8 未来前景展望
8.5 北京海鑫科金高科技股份有限公司
8.5.1 企业发展概况
8.5.2 人脸识别业务
8.5.3 经营效益分析
8.5.4 业务经营分析
8.5.5 财务状况分析
8.5.6 核心竞争力分析
8.5.7 公司发展战略
8.5.8 未来前景展望
8.6 北京旷视科技有限公司
8.6.1 企业发展概况
8.6.2 竞争实力分析
8.6.3 Face++动态
8.6.4 技术研发动态
8.6.5 融资布局分析
8.6.6 业务发展展望
8.7 广州云从信息科技有限公司
8.7.1 企业发展概况
8.7.2 竞争实力分析
8.7.3 业务板块分析
8.7.4 融资布局加快
8.7.5 技术产品研发
第九章 人脸识别投资合作项目案例分析
9.1 人脸识别高精度仪器开发及应用项目
9.1.1 项目基本情况
9.1.2 项目完成情况
9.1.3 项目技术突破
9.1.4 项目验收意义
9.2 人脸识别模块及系统软件销售项目
9.2.1 项目基本情况
9.2.2 项目产品范围
9.2.3 项目影响分析
9.3 智慧社区智能人脸识别门禁布控系统项目
9.3.1 项目基本情况
9.3.2 项目影响分析
9.3.3 项目风险分析
第十章 中国人脸识别行业发展机遇分析
10.1 生物识别市场发展前景向好
10.1.1 市场需求空间
10.1.2 应用趋势明朗
10.1.3 产业发展方向
10.1.4 技术发展趋势
10.2 人脸识别企业投融资布局加快
10.2.1 依图科技融资动态
10.2.2 商汤科技融资动态
10.2.3 中科视拓融资布局
10.2.4 深醒科技融资布局
10.2.5 唯思科技融资动态
10.3 人脸识别市场投资态势良好
10.3.1 驱动因素分析
10.3.2 市场融资加快
10.3.3 技术研发推进
10.3.4 技术要求提高
第十一章 中国人脸识别行业发展前景及趋势分析
11.1 人脸识别市场发展前景展望
11.1.1 智慧城市推动
11.1.2 行业发展展望
11.1.3 发展潜力分析
11.1.4 市场规模预测
11.1.5 国际市场布局
11.2 人脸识别行业未来发展趋势
11.2.1 行业整体发展趋势
11.2.2 多模态融合趋势
11.2.3 行业规范化趋势
11.2.4 技术精准化趋势
人脸识别报告图表目录
图表 人脸识别过程
图表 人脸特征点提取向量化
图表 人脸识别算法流程
图表 五种生物识别技术性能对比
图表 人脸识别的优势
图表 全球主要经济体PMI指标
图表 全球主要经济体贸易进出口额
图表 全球主要经济体汇率
图表 全球人脸识别行业市场规模发展趋势
图表 系统的基本结构和功能要求
图表 系统基本构成框图
图表 系统的性能级别在误报率
图表 系统的监测类别
图表 测试识别区域实景图(一)
图表 测试识别区域实景图(二)
图表 监视名单长度及照片质量描述
图表 2016-2018年国内生产总值增长速度(季度同比)
图表 2017-2018年规模以上工业增加值增速(月度同比)
图表 2017年按领域分固定资产投资(不含农户)及其占比
图表 2017年分行业固定资产投资(不含农户)及其增长速度
图表 2017年固定资产投资新增主要生产与运营能力
图表 2017-2018年固定资产投资(不含农户)增速(同比累计)
图表 中国网民规模和互联网普及率
图表 中国手机网民规模及其占网民比例
图表 2018年与2017年居民人均可支配收入平均数与中位数对比
图表 生物识别技术的类别
图表 2007-2020年全球生物市场规模与预测
图表 全球生物识别技术市场结构
图表 生物识别系统工作示意图
图表 云端发源的CV技术与传统生物识别技术的对比
图表 全球人脸识别行业面部识别错误率
图表 LFW测试中人脸识别精度超过人眼识别第一档部分公司
图表 刷脸支付用户满意度
图表 2015-2017年人脸识别相关政策
图表 人脸识别产业链
图表 人脸识别产业链及代表公司
图表 人脸识别三大要素
图表 不同识别模式的ID置信度、计算成本、数据源成本对比
图表 3D人脸识别与2D人脸识别数据对比
图表 不受环境光影响的近红外人脸图像
图表 主动近红外成像设备
图表 人脸识别发展路径
图表 我国人脸识别行业市场规模
图表 人脸识别在各个行业的典型盈利模式
图表 人脸识别技术发展历程
图表 人脸识别匹配流程
图表 人脸识别系统组成
图表 系统流程图
图表 超分辨率重建对比图
图表 3D(维)人脸识别示意图
图表 人脸模型直观指示
图表 3D视觉系统的工作原理
图表 主流的3D成像技术比较
图表 3D人脸识别技术较2D人脸识别技术优势较为明显
图表 苹果iPhoneX的“前刘海”
图表 主要生物识别方式比较
图表 人眼组织结构
图表 虹膜组织结构
图表 虹膜识别系统工作原理
图表 各生物识别技术性能比较
图表 虹膜识别技术应用广泛
图表 语音识别系统流程
图表 指静脉识别技术原理
图表 手指静脉识别技术历年专利申请量
图表 手指静脉识别技术国内主要申请人
图表 手指静脉识别技术各国专利申请数目
- 电话订购:166 199 87910
- 邮件订购:hjbaogao@163.com
- 微信订购:166 199 87910
数据来源权威
报告数据主要采用国家统计数据,海关总署,统计局年鉴,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
专业品质保证
公司从事行业研究与市场调研多年,具有资深研究与咨询人员30多位,90%以上为大学本科及以上学历, 211、985高校及研究生比例为50%。同时,公司拥有强大的智囊顾问团,与国内众多研究机构和专家有着密切的合作关系。高素质的专业研究团队将帮助客户实现价值,与客户一同成长。
买得放心省心
公司为客户提供完善的售前、售后服务,在客户中信誉良好,报告订购以后我们的研究人员将会为您提供全程的后续修改及补充服务。
享受增值服务
购买研究报告后公司将提供一年的行业数据、产量数据免费更新服务。
贴心定制报告
如果您在网站上找不到你要的报告,您可以来电订制您要的报告。